Kevin Sommerville – Vice President of Sales

Kevin Sommerville – Vice President of Sales

Kevin earned a B.S. in Finance from the State University of New York.  Kevin began his career with Thermal Products, Inc while studying for his undergraduate degree.  Now in his 21st year, Kevin handles the Direct accounts and the NY, NJ, PA trade areas for Thermal Products, Inc.  In addition, Kevin brings focus to the sales and operational side of the business.  Kevin’s role is to achieve  yearly company goals through high levels of customer service, engineering design, and marketing through varying media outlets.

Mobile: 518-366-0771

GT Exhaust and Silex both have been known as the "go to" manufacturers for Engine Silencers and PD & Centrifugal Blower Silencer. Their ability to design and build a quality product at competitive price levels are second to none.

GT Exhaust and Silex have the ability to offer many different arrangements and styles to fit almost any application. Whether your need fits an application below or not, contact Thermal Products and speak with our sales and engineering team about your next application today!

Select GT Exhaust or Silex from the menu bar above to read more on our abilities.

Applications:

• Positive Displacement Blowers
• Centrifugal Multistage Blowers
• Pneumatic Conveying Systems
• Vacuum Trucks
• Compressors
• Compression Systems
• Engine Exhaust
• Marine Applications

Products Available:

• Industrial Silencers
• Emission Control Products
• Insulation Blankets
• Connectors
• Wye Connectors
• Vibration Isolation
• Expansion Bellows
• Exhaust Accessories

Thermal Products has arrived at the Craft Brewers Conference in Washington D.C. stop by to see Scott D Robinson and the Advantage Engineering Team at booth #645!
#chillers
@TPIExchangers

@AdvantageEng

Thermal Products Inc, will be participating at the Craft Brewers Conference (CBC) & Brew Expo America in our nation’s Capital, Washington D.C., together with our partners Advantage Engineering http://thermalproducts.com/products/chillers/advantage-engineering and Enerquip Heat Exchangers http://thermalproducts.com/products/shell-tube-heat-exchangers/enerquip

This annual event allows exhibitors and buyers to develop profitable business relationships and helps brewing and brewery restaurant professionals encounter the latest and best products and services that industry vendors have to offer.

We’ll be there to show ours!

Please visit Scott Robinson of Thermal Products and our partners at the booth locations below.

Advantage Engineering Booth #645

Enerquip Heat Exchangers Booth #2002

Learn how Thermal Products can assist you with your quick tank heating needs to your fully customized tank heating needs for all types of fluids.

Application:
In 1998 the Environmental Protection Agency (EPA) ruled that owners of Underground Storage Tanks must conform to standards that were established for secondary containment. Secondary containment tank is a tank assembly consisting of a primary tank and an integral outer secondary containment means capable of being monitored for leakage. EPA required all Underground Storage Tanks to be retrofitted to meet secondary containment requirements, removed or replaced by Above Ground Storage Tanks. Many State Agencies have indicated the use of Above Ground Storage Tanks is the best option. Above-ground Storage Tanks are usually installed outdoors which can lead to problems when the product viscosity is affected by colder temperatures. The solution is to add a heater to warm the product and maintain a free flowing viscosity.

Design Requirements:
An 8,000 gallon rectangular Above-ground Storage Tank filled with diesel fuel was installed at a major airport in the U.S. With a design outside winter temperature of ‐20ºF and 10 MPH winds a heater is required to maintain the fuel at 40ºF. Since no openings were allowed in the side of the tank the only access for the heater was through the top of the tank. Using the new INDEECO I‐HEAT heater selection program it was quickly determined that a 2 KW immersion heater would be required.

Solution:
INDEECO selected an over‐the‐side flanged deep tank immersion heater with a remote industrial control panel. The heater used was a 3‐inch 150# carbon steel flange and 0.475 diameter steel elements rated at 6 watts per square inch. The 46‐inch long heating elements were mounted to a 76‐inch riser which positioned the elements in the lower half of the tank. The heater was furnished with both high limit and temperature control thermocouples.

One of INDEECO’s standard NEMA 4X industrial control panels equipped with a main power disconnect switch, controlling contactor, transformer, digital thermostat, Type J thermocouple controller, status pilot light and 150 watt enclosure heater was selected to control the heater.

INDEECO Advantages:
The customer was looking for a quick solution. INDEECO was able to offer a quick-ship standard industrial panel. The custom heater’s lead‐time was 5‐weeks and the panel was available in 2‐weeks.

Contact Thermal Products to see how we, with INDEECO can assist you with all your tank heating needs

Written by Indeeco

An Advantage Engineering, Evaporative Cooling Tower Stand is used to elevate the outdoor mounted cooling tower to facilitate gravity return of water from the cooling tower to an indoor tank. Saving energy, by eliminating the need for a cooling tower pump and conduit runs and opening up critical ground space for other equipment needs.

Advantage Power Tower cooling tower cells from 45-135 ton capacity use a galvanized steel bolt together stand.

The galvanized steel, bolt together stand provides a rigid mounting and is easy to install. It requires no welding or post assembly painting and is designed to last for many years.

The stand is available in three (3) heights; 5 foot, 10 foot and 15 foot.

Power Tower cooling towers from 170-540 ton capacity use a welded and painted steel stand.

Contact Thermal Products to discuss your application today!

Overview
 

The Metal Particle Detector switch from AMOT can detect and alert equipment operations of the presence of metal particles in nonconductive fluid lubrication systems (lube oil, transmission fluid etc).

Typical applications

Developed for use in manual and automatic control systems:

  • Reciprocating equipment
    - gas engines
    - diesel engines
    - compressors

  • Rotating equipment
    - gas turbines
    - steam turbines
    - transmissions and gear boxes
    - pumps
    - compressors

At utility gas let down stations, the natural gas transmitted through the pipelines is reduced in pressure from the transmission pressure (up to 700 psi) down to a pressure range of 30-50 psi.  As the pressure is let down, the gas expands.  During the expansion of the gas it will cool, generally in the range of 10 F for each atmosphere of expansion.  As the gas cools, the water vapor in the gas stream will freeze if the temperature of the gas drops low enough.  The ice from the gas stream will cause severe problems in the valves and piping.  To avoid the potential problem of ice formation, the gas is heated prior to the pressure let down.  Typically the natural gas is heated from approximately 320 F to 850 F using a hot glycol solution or thermal oil at 1500 F.

Thermal Products recommends a high pressure API Heat Transfer Basco TEMA Type BEP or BEU shell & tube heat exchanger for natural gas heaters.  A type BEP is a straight through design allowing the heat exchanger to easily be installed in the pipeline.  With the high pressure gas flowing through the tubes, the BEP's floating tubesheet design protects the unit from the stresses of differential thermal expansion. 

The U-Tube configuration of the type BEU allows it to handle differential thermal expansion since the bent tubing is inherently free to expand.  Both the BEP and BEU designs avoid the use of packing on the tubeside thus minimizing the chance for a dangerous natural gas leak to the atmosphere.  A glycol solution or thermal oil from a Thermal Fluid Heater is circulated through the shellside of the heat exchanger, and returned to the boiler.  Natural gas heaters are sized using the lowest gas pressure case, since the maximum tube velocity is obtained from the lowest operating pressure.

A variety of materials can be used but generally the heat exchanger is constructed entirely of carbon steel.  This provides the required strength for the critical operating conditions while minimizing the cost of the heat exchanger.  A rupture disc is normally provided on the shellside to protect the heat exchanger in the unlikely event of a tube failure.  The rupture disc allows a safe escape of the high-pressure gas should a tube rupture allowing the gas to enter the shellside of the heat exchanger. 

Contact Thermal Products for help with your application!

Two Basco Type 500 shell and tube heat exchangers with flanged connections ready for shipment.  Contact us today to see how Thermal Products can assist you!

Some of the Basco 500 Features include:

Performance notes.
 Cost-effective, standard design for maximum performance
at minimum cost
 Readily available with short lead times
 Uses precision-punched baffles to minimize fluid bypass
and maximize heat transfer
 Manufactured for a wide range of duties in state-of-the-art
ISO-certified facilities
Features and specifications.
 Removable and non-removable straight tube or
U-tube bundles
 One-, two-, and four-pass designs
 High-strength shells in carbon steel or stainless steel
 Tubesheets are welded to the shell; holes are precision
drilled for proper fit and sealing
 Baffles are hot-rolled punched steel for enhanced strength
and reliability – engineered for correct fit to reduce tube
wall damage from high-velocity liquids or gases
 Tubes are available in a range of materials, depending on
the application, and are roller expanded using controlled
pressure to ensure proper bond
 Heavy-duty mounting brackets can be reversed or rotated;
slotted holes allow for quick install
 Fabricated end bonnet heads are standard on TEMA-C
and some ASME units; zinc anodes available for
added protection
 Connections available, threaded or flanged, in 3 in., 4 in.,
5 in., 6 in., and 8 in. diameters – additional connections can
be added

Off-The-Shelf Sanitary and Utility Heat Exchangers

U-Tube Shell & Tube Heat Exchangers

Top producers of food, beverage, dairy and process products put their faith in Thermal Products and Enerquip, the leading provider of sanitary and industrial stainless steel shell and tube heat exchangers, for your critical heating and cooling needs.

Thermal Products and Enerquip’s resourceful team can provide you with sizing and design selection assistance. Our skilled sales engineers use state-of-the-art modeling software to recommend the right heat exchanger for each heating or cooling application. Your end result will be a high quality, sanitary or industrial heat exchanger with lead-times that are half of the industry average.

Thermal Products and Enerquip's 40 standard sized heat exchangers are either in stock or available to be shipped in days instead of months.

Contact us for quick shipping requirements today!

What sets Thermal Products and Enerquip’s sanitary shell and tube exchangers apart?

100% 304 stainless steel construction for corrosion resistance and cleanliness.

Built to high quality TEMA C guidelines, ASME hydro-tested and code stamped.

The perfect choice for heating or cooling low-fouling fluids.

Sanitary tri-clamp connections on the process side allow for easy installation.

U-tube design allows tubes to expand and contract freely to prevent damage.

Removable/replaceable tube bundle and o-rings make replacement quick and easy.

Wide selection of sizes from 4” diameter to 10” diameter in lengths up to 9’ long.

Heat exchangers built to 3-A standard 12-07 are available as an upgrade.

Options Available (Not all of these are Off-the-Shelf options.) :

Insulation and cladding with stainless steel jacket for heat conservation and personnel protection

Mounting foot supports – horizontal clamp-on saddles or vertical welded lugs

Baffle & connection changes for liquid to liquid applications

Upgrades to 3-A or double tubesheet design for high purity applications

Passivation and/or electro-polished product contact surfaces

Available in material upgrades to 316Lss, Duplex, Hastelloy, AL6XN and other alloys

Multiple-pass tubesheets and bonnets for a higher tubeside velocity in a small space

What about special requirements?

Thermal Products has a solution for the most unusual requirements and can custom design a shell and tube heat exchanger that will meet your specific application, size, special alloy or configuration in Sanitary or Utility applications. Contact us today!

Have you noticed decreased efficiency from your heat exchanger or circulation heater? So much so that your process is now operating out of acceptable temperature, pressure drop or flow range? You are most likely having significant fouling issues.

The most common reasons heat exchangers don’t provide the heat transfer rate they were designed for or have increased pressure drop from occlusion, is what we call fouling. Fouling is the buildup of sediments, mineral calcification and/or debris from the process that settles onto the surface area of a heat exchanger or circulation heater.

During the design stage, Thermal Products will inquire about specific process media makeup and the cooling or heating media. Thermal Products will ask you about the suspended solids, mineral content, and chemical content along with the typical needs of flow rate, heat load and temperatures in and out of the heat exchanger. With the provided information the Thermal Products design engineers will take into account the appropriate fouling factor to maximize the lifespan of the heat exchanger or preventative maintenance interval, reducing unexpected costs for the plant. The fouling factor essentially increases the surface area, over and above what is needed in order to perform the required heat load duty.

What are the different types of fouling?

Scaling is one of the most common types of fouling. Minerals and Salts commonly found in natural waters have a lower solubility in warm water than cold. Therefore, when cooling water is heated during the cooling process, particularly at the tube wall or plate wall, these dissolved salts will crystallize on the surface in the form of scale.

 

Thermal Products will design a heat exchanger or circulation heater with a lower tube temperature or watt density respectively, reducing the tube wall or element temperature. The Thermal Products design engineers will also look at process velocities through the heat exchanger or circulation heater, as slower velocities can exacerbate the problem.

This is noticed typically in the use of cold well water or open cooling tower applications.

Sedimentation, is the depositing of dirt, sand, rust, and other small debris and is most common when fresh water is used. This type of fouling typically leads to the heat exchanger or circulation heater becoming impacted and will completed occlude the flow, if left untreated. This can be controlled to a degree by the heat exchanger design through velocity control, but need to be careful as increasing the velocity too much will lead to erosion of your tubes or elements. Thermal Products will also design and offer upstream filtration or straining equipment to assist in removal of this type of debris before it gets to the heat exchanger or circulation heater.

If your process is sensitive, Thermal Products can design a closed-loop heating or closed-loop cooling process to eliminate the issues of sedimentation fouling completely.

Biological/Organic growth material typically occurs in marine, chemical, or bioorganic applications and can cause considerable damage if allowed to build up. Thermal Products can design a heat exchanger or circulation heater that can be resistant to biological fouling or organic fouling using different materials and design considerations.

Chemical Reaction Coking appears in oil heating applications, where the heat exchanger tubes or circulation heater elements are too hot. When the oil comes in contact, it burns the oil and deposits the resulting hydrocarbon on the heating surface. If left and the situation is not corrected, it will lead to premature failure of the heat exchanger or circulation heater. All oils are susceptible to Coking, but at a wide range of temperatures, dependent on the oil type.

As in mineral Scaling, Thermal Products will require the type of oil used so we can determine its flash point, thermal conductivity, specific heat and specific gravity so we design the proper heat exchanger or circulation heater.

Heat Exchanger and Circulation heater design are far more involved than looking at fouling, but it is an important factor to include when performing the design.

Any fouling, left untreated will result in the failure of that heat exchanger or circulation heater. The failure can be catastrophic in some cases.

As touched on earlier, Thermal Products can reduce the fouling possibilities greatly, by “closing the loop” if fouling is a chronic problem for your process. Thermal Products can design a Chiller, Closed loop cooling, closed loop heating or offer fired process heaters to perform the heating or cooling as your process dictates.

             

Contact any member of the Thermal Products team to discuss your process needs.

Page 3 of 4