
FLUID COOLING | Shell & Tube EKT Series

COPPER & STEEL CONSTRUCTION

Features

- HPU, In-tank Cooler
- Compact Size
- EK Style & Size
- High Efficiency Finned Bundle Design
- Serviceable
- Removable
- In-tank Design Minimizes Space Requirements and Reduces Plumbing
- Internal Aluminum Fins Dramatically
 Increase Performance
- Removable End Bonnets Allow Water Passage Servicing
- High Strength Steel Shell

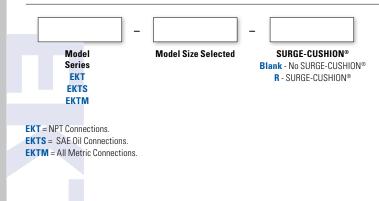
OPTIONS

SAE or BSPP Connections Available Internal Oil Flow Bypass Relief (SURGE-CUSHION®)

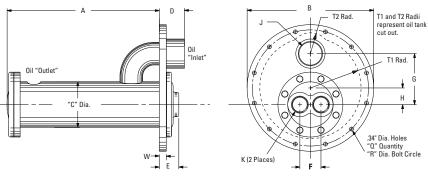
Ratings

Operating Pressure: Shellside 75 psi – Tubeside 150 psi Test Pressure: Shellside 75 psi – Tubeside 150 psi

Maximum Temperature 250° F


Materials

Shell Steel Tubes Copper Fins Aluminum Tubesheets Steel Baffles Steel End Bonnets Cast Iron Gaskets Nitrile Rubber/Cellulose Fiber


The SURGE-CUSHION[®] is a protective device (patented) designed to internally bypass a portion of the oil flow during cold start conditions, or when sudden flow surges temporarily exceed the maximum flow allowed for a given cooler. This device may replace an external bypass valve, but it is not intended to bypass the total oil flow.

How to Order

Dimensions

MODEL	A	В	C	D	E	F	G	Н	J NPT or BSPF	J SAE	K NPT or BSPF	Q	R	T1	T2	w	Net. Wt.	Approx. Ship Wt.	
EKT-508	8.87	0.70	2 55	1.04	1.00	1 1 2	2.44	FO	2/4"	#10	2./0"	C	E 00	2.25	70	62	11	14	
EKT-518	18.87	6.79	2.55	1.84	1.68	1.12	2.44	.50	3/4"	#12	3/8"	6	5.60	2.25	.79	.62	14	16	
EKT-708	8.72	9.75	3.52		1.67	1.02	2.04	1.05			2/4"		8.94	4.00			23	27	
EKT-718	18.72	9.70	3.02	2.22	1.07	1.62	3.94	1.25	1-1/2"	#24	3/4"	12	0.94	4.00	_	.70	30	34	
EKT-1012	12.55	10.38	5.05	2.22	2.22	2.20	4.00	1 10	1-1/2	#24	1"	12	9.62	4.38	1 1 2	.70	42	46	
EKT-1024	24.55	10.38	0.05		2.23	2.38	4.69	1.19		1			9.0Z	4.38	1.12		58	63	

NOTE: We reserve the right to make reasonable design changes without notice. Certified drawings are available upon request. All dimensions in inches. Tank gasket is included. BSPP threads are 55° full form whitworth.

Selection Procedure

Performance Curves are based on a 40°F approach temperature, a 2:1 oil to water ratio and an average oil viscosity of 100 SSU. Example: oil leaving cooler at 125°F with 85°F cooling water (125°F - 85°F = 40°F). The 2:1 oil to water ratio means that for every GPM of oil circulated, a minimum of 1/2 GPM of water must must be circulated to obtain the curve results.

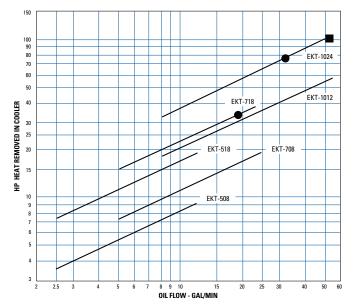
Corrections for approach temperature and oil viscosity.

 $HP_{Heat Removed}$ in Cooler =

 $HP_{Actual} x \left[\frac{40^{\circ}F}{\text{Oil out and }^{\circ}F} \right] x \text{ Correction A}$

Step 2 Oil Pressure Drop Coding: ● = 5 PSI; ■ = 10 PSI. Curves havingnopressuredropsymbolindicate that the oil pressuredrop is less than 5 PSI to the highest oil flow rate for that curve. Multiply curve oil pressure drop by Correction B.

Viscosity Corrections


Average Oil SSU	A	В		
50	0.84	0.6		
100	1.0	1.0		
200	1.14	2.0		
300	1.24	3.1		
400	1.31	4.1		
500	1.37	5.1		

Maximum Flow Rates

Unit Size	Shell Side GPM)	Tube Side(GPM)			
500	20	6			
700	60	12			
1000	80	28			

If maximum allowable flow rates are exceeded, premature failure may occur.

Performance Curves

