FLUID COOLING | Shell & Tube K Series

COPPER & STEEL CONSTRUCTION

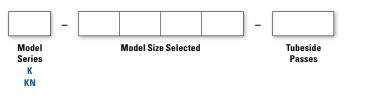
Features

- Modine Interchange
- Finned Tube Bundle
- 3/16" Tube Size
- Use EK for New Application
- Cast Iron Hubs
- Steel Shell

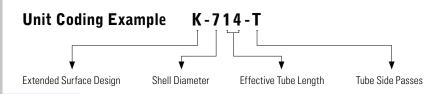
OPTIONS

Ratings

SAE Internal "O" Ring Ports **Shell Side**

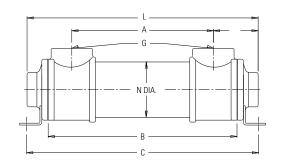

WATER COOLED K

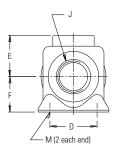
Pressure Ratings (psi) K-500 & K-700 Series Operating Test					
500	550 Shells				
150	225 Tubes				
Pressure Ratings (psi) K-1000 Series Operating Test					
400	450 Shells				
150	225 Tubes				
Operating Temperature 350° F					


Materials

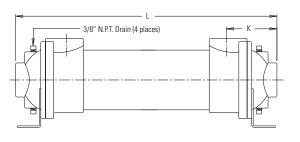
Shell Steel Tubes Copper Baffles Steel Mounting Brackets Steel Gaskets Non Asbestos Nitrile Rubber/ Cellulose Fiber Nameplate Aluminum Foil Fins Aluminum End Hubs Cast Malleable Iron End Bonnets Cast Iron Headers Cast Malleable Iron

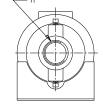
How to Order


"K" Prefix designates N.P.T. shell configurations. "KN" Prefix designates SAE internal thread O-ring shell connections.

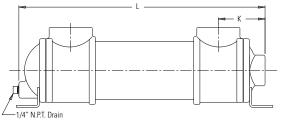


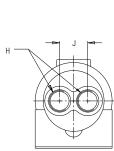
Dimensions


One Pass K-500 & K-700 Series



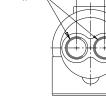
Model	L	H NPT	к	
K-508-0	10.19			
K-512-0	14.19	.75	2.22	
K-514-0	20.19			
K-708-0	10.69			
K-712-0	14.69	1.25	2.84	
K-714-0	16.69	1.20		
K-718-0	20.69			
K-1012-0	17.12			
K-1014-0	19.12			
K-1018-0	23.13	2.00	4.31	
K-1024-0	29.12			


K-1000 Series



Model	L	H NPT	J	к
K-708-T	10.69			
K-712-T	14.69	1.00	2.00	2.84
K-714-T	16.69			
K-718-T	20.69			
K-1012-T	15.62			
K-1014-T	17.62			
K-1018-T	21.62	1.50	2.38	4.31
K-1024-T	27.62			

Two Pass K-700 Series



K-1000 Series

Н

Model	А	В	C	D	E	F	G N.PT.	М	N DIA.	WEIGHT (LBS)	G SAE (OPTIONAL)				
K-508	5.75	8.00	10.25							7.75					
K-512	9.75	12.00	14.25	2 5 0	1.88	.88 1.62	.75	.34 X .50	2.50	8.76	#12 - 1-1/16 - 12 UN-2B				
K-514	11.75	14.00	16.25	2.50						9.12					
K-518	15.75	18.00	20.25							10.00					
K-708	5.00	8.00	10.75	3.00	2.62	2.25	1.50	.44 x .75	3.50	15.75	#24 - 1-7/8 - 12				
K-712	9.00	12.00	14.75							18.40					
K-714	11.00	14.00	16.75		0.00	0.00	2.02	2.02	2.02	2.20	1.00		0.00	19.75	UN-2B
K-718	15.00	18.00	20.75							21.50					
K-1012	8.50	12.00	15.50	4.00	3.50	4.00	2.00	.44 x 1.00	5.00	42.50	#32 - 2-1/2 -12				
K-1014	10.50	14.00	17.50							44.25					
K-1018	14.50	18.00	21.50							49.00	UN-2B				
K-1024	20.50	24.00	27.50							57.00					

Note: We reserve the right to make reasonable design changes without notice. Dimensions are in inches.

Selection Procedure

Performance Curves are based on 100SSU oil leaving the cooler 40°F higher than the incoming water temperature (40°F approach temperature).

Step 1 Determine the Heat Load. This will vary with different systems, but typically coolers are sized to remove 25 to 50% of the input nameplate horsepower. (Example: 100 HP Power Unit x .33 = 33 HP Heat load.) BTU/Hr If BTU/Hr. is known: HP = 2545

Determine Approach Temperature. Actual Desired oil leaving cooler °F - Water Inlet temp. °F = Approach

Step 3 Determine Curve Horsepower Heat Load. Enter the information from above:

HP heat load x $\frac{40}{\text{Actual Approach}}$ x $\frac{\text{Viscosity}}{\text{Correction A}}$ = $\frac{\text{Curve}}{\text{Horsepower}}$

- Step 4 Enter curves at oil flow through cooler and curve horsepower. Any curve above the intersecting point will work.
- Determine Oil Pressure Drop from Curves. Multiply pressure Step 5 drop from curve by correction factor B found on oil viscosity correction curve. \bullet = 5 PSI; \blacksquare = 10 PSI; \blacktriangle = 20 PSI.

Oil Temperature

Oil coolers can be selected by using entering or leaving oil tempertures.

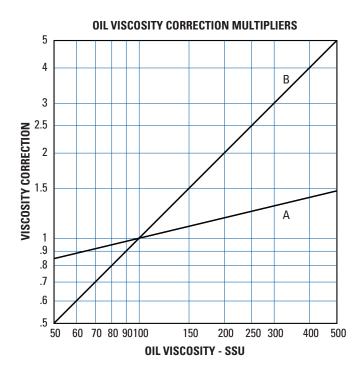
Typical operating temperature ranges are:

Hydraulic Motor Oil	110°F - 130°F
Hydrostatic Drive Oil	130°F - 180°F
Lube Oil Circuits	110°F - 130°F
Automatic Transmission Fluid	200°F - 300°I

Desired Reservoir Temperature

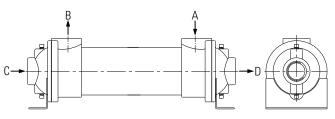
Return Line Cooling: Desired temperature is the oil temperature leaving the cooler. This will be the same temperature that will be found in the reservoir.

Off-Line Recirculation Cooling Loop: Desired temperature is the temperature entering the cooler. In this case, the oil temperature change must be determined so that the actual oil leaving temperature can be found. Calculate the oil temperature change (Oil \triangle T) with this formula:

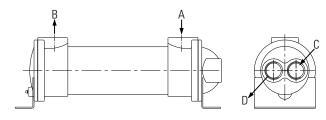

Oil $\triangle T = (BTU's/Hr.)/GPM$ Oil Flow x 210).

To calculate the oil leaving temperature from the cooler, use this formula:

Oil Leaving Temperature = Oil Entering Temperature - Oil \triangle T.


This formula may also be used in any application where the only temperature available is the entering oil temperature.

Oil Pressure Drop: Most systems can tolerate a pressure drop through the heat exchanger of 20 to 30 PSI. Excessive pressure drop should be avoided. Care should be taken to limit pressure drop to 5 PSI or less for case drain applications where high back pressure may damage the pump shaft seals.

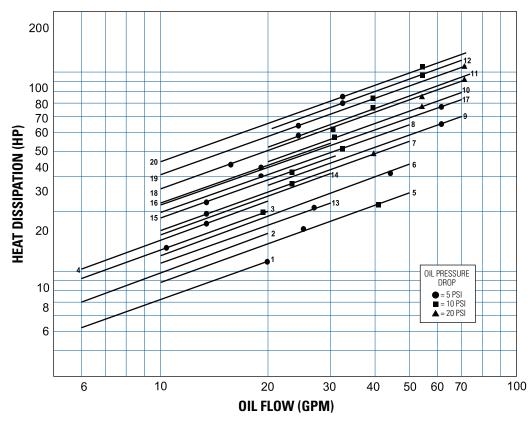


Piping Diagrams

Single Pass Model

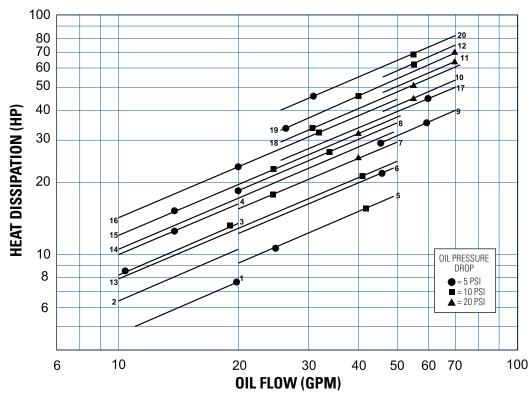
Two Pass Model

A = Hot fluid to be cooled


 \mathbf{B} = Cooled fluid

C = Cooling water in

D = Cooling water out


Performance Curves

2 to 1 Oil to Water Ratio

Model Code						
1. K-508-0						
2. K-512-0						
3. K-514-0						
4. K-518-0						
5. K-708-0						
6. K-712-0						
7. K-714-0						
8. K-718-0						
9. K-1012-0						
10. K-1014-0						
11. K-1018-0						
12. K-1024-0						
13. K-708-T						
14. K-712-T						
15. K-714-T						
16. K-718-T						
17. K-1012-T						
18. K-1014-T						
19. K-1018-T						
20. K-1024-T						

4 to 1 Oil to Water Ratio

Maximum Flow Rates

Unit Size	Shell Side (GPM)	Tube Sid O	le (GPM) T
500	20	13	_
700	70 24		12
1000	100	56	28